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The error in the phases increases slightly if the error 
in the data increases from o-=0.00 to o-=0.04 
whereas from o-=0.04 to o-=0.08 the increase in 
phase error is much stronger. In reality, however, the 
standard deviation of the (random) error will be 
smaller than 0.08, but the data will be affected by 
systematic errors as well. 

The results reported in the present paper show that 
it is possible to estimate triplet invariants from 
artificial two-wavelength data (which may be corrup- 
ted by random errors) and use the invariants in a 
multi-solution procedure to obtain structure-factor 
phases without the need to solve the heavy-atom 
structure. 
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Abstract 

The dependence of the X-ray transmission coefficient 
of a thin-film coating as a function of incidence has 
been measured in the grazing-angle range. The 
method is based on the use of a substrate Bragg 
reflection to redirect the incident or transmitted 
beams. It allows grazing incidence from both outside 
and inside the substrate to be performed. The 
geometry of the experiment is described. The results 
are interpreted by means of dynamical theory com- 
bined with an optical formalism for stratified systems. 
Experimental results and applications are compared 
with reflectivity data. 

1. Introduction 

Surface and thin-film studies using X-ray or neutrons 
in glancing-incidence geometries have undergone 
considerable development in recent years. In these 
studies, one makes use of the different signals from 
a sample when struck by a grazing beam such as, for 
instance, specular reflection in the reflectivity tech- 
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nique (Parratt, 1954), diffracted beams in grazing- 
incidence scattering (GIS) (Marra, Eisenberger & 
Cho, 1979) or even fluorescence (Brunel, 1986). 
Glancing angles are used in these techniques to limit 
the penetration depth and thus to enhance the sensi- 
tivity to the near-surface volume. Therefore, bulk 
substrate scattering is often considered as a nuisance 
in these experiments. The aim of this paper is to show 
that it is possible to take advantage of the substrate 
to perform measurements of the transmission 
coefficient which can provide useful information, 
complementing data from other techniques. 

The interpretation of the data of grazing-incidence 
techniques is often made by means of kinematical 
theory (Born approximation). Such an approximation 
is justified by the weak coupling between X-rays (or 
neutrons) and matter. When the incidence angle is 
close to the critical angle for total reflection, this 
approximation has to be removed since multiple- 
scattering effects become important. Improvement of 
simple Born approximations can be made [ e.g. distor- 
ted-wave Born approximation (Vineyard, 1982)] but 
the most general way of performing the calculations 
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is to use dynamical theory. This theory is very general 
and includes all the effects of surface scattering (Dur- 
bin & Gog, 1989) but is well suited for semi-infinite 
single crystals only. We shall show here how we can 
use this theory to interpret experimental results when 
the crystal surface is coated with a thin film and 
especially how we can couple this theory to the optical 
formalism for stratified media used for instance in 
reflectivity calculations. The experimental part of the 
work concentrates on the investigation of a multilayer 
adsorbate deposited over a silicon substrate. 

2. G e o m e t r i c a l  d e s c r i p t i o n  o f  the  m e t h o d  

For most thin films, measurements in the transmission 
mode are impossible due to the presence of the sub- 
strate which is opaque to the radiation, especially 
when the incidence angle is small since the travelling 
length through the substrate is large. For this reason, 
there have been no transmission measurements as a 
function of incidence, to our knowledge, so far. 

A straightforward way of solving this problem 
would be to use free-standing films or very thin sub- 
strates (Rieutord, Benattar & Bosio, 1986) but graz- 
ing-incidence experiments require large fiat areas 
which are incompatible with this kind of preparation. 
Moreover, in many techniques, substrates do play an 
important role in the building of the films and cannot 
be removed. 

In our case, we take advantage of the substrate. 
The basic idea is to use the substrate as a mirror to 
reflect the transmitted beam out of the sample. The 
simplest way would be to use specular reflection at 
the film/substrate interface. Such a reflection has 
already been used for instance for generating a stand- 
ing-wave pattern allowing investigation of the 
deposited film (Bedzyk, Bommarito & Schildkraut, 
1989; Authier, Gronkowski & Malgrange, 1989). It is 
not suitable however for our purpose since its ampli- 
tude is of the same order of magnitude as the reflec- 
tions from other density gradients in the film and its 
effect is merely a contribution to the overall reflectivity 
of the system. 

Thus, as for the classical standing-wave technique, 
we have used the reflection from the Bragg planes of 
the substrate (Fig. 1). The advantage of this technique 
is that reflection remains high even at large angles of 
incidence. The main problem is that this reflection 
occurs only for a definite orientation (the so-called 
Bragg angle 0B) of the Bragg planes with respect to 
the incidence beam, whereas we need to vary the 
incidence of the beam with respect to the surface 
(denoted by i from now on). 

Previous studies (Brfimmer, HSche & Nieber, 1976; 
Kishino, N o d a &  Kohra, 1972) aimed at a measure 
of the intensity of a Bragg reflection as a function of 
i (so-called asymmetric Bragg-case diffraction) just 
used different samples with surfaces cut along 
different orientations with respect to the Bragg planes, 
according to the relation 

i+a- -OB=O,  (1) 

where a is the angle between the normal to the Bragg 
planes nB and the normal to the surface ns. Obviously 
such a method cannot be applied in our case since 
we want to study the same deposit for a continuous 
range of incident angles. 

The solution we have derived for this problem is 
to use a reflection on Bragg planes whose normals 
do not lie in the plane of incidence 7rs (defined by 
the directions of the incident beam ni and the normal 
ns to the surface), i.e. use a geometry where the 
incidence plane for surface reflection (Trs) is distinct 
from the incidence plane for Bragg reflection (~r~). 
Relation (1) is then replaced by a relation involving 
a supplementary degree of freedom which is the 
orientation of these two planes with respect to each 
other or equivalently the rotation angle ~o of nB about 
ns (Fig. 2). This relation reads 

sin 0 ~ -  sin i cos a 
cos ~ -  , (2) 

cos i sin a 

obtained from angular relations in the spherical 
triangle (ui, riB, ns). 

Varying q~ will enable us to vary the incidence while 
maintaining the Bragg condition on a set of reticular 

X RAY BEAM ~ nB / 

multilayer ::::::::::::::::::::::::::::::::::::::::::::::::::: 

substrate ~ ~  Bragg 
~ / P l a n e s  

Fig. 1. Schematic view illustrating the principle of the method. 
The X-ray beam crosses the film at the entrance, is reflected by 
the atomic planes of substrate and crosses the film once again 
at the exit. Note that the incident and diffracted rays are not 
actually in the same plane. 

ns 

I-I s 

lib ¢t 

i 
Fig. 2. Geometry of the experiment, ul, Ud and ur are the directions 

of the incident, Bragg-reflected and surface-reflected waves, ns 
and ns are the normals to surface and Bragg planes, respectively. 
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planes of the substrate. To record the diffracted beam, 
the detector will have to be moved out of the 7rs plane 
as well. The two angles ~b and to defining the position 
of the detector (see Fig. 2) are given by 

where 

tan to = tan (20s) cos/3, 

tan 0 = sin (20B) sin/3, 

COS fl -- 
cos a - s i n  0n sin i 

cos  OB cos  i 

A schematic view of the four-circle difffractometer 
used for the experiment with the corresponding angles 
i, ~o, to, q~ is shown in Fig. 3. 

The same geometry has been used in a previous 
study (Brunel & de Bergevin, 1986) where the 
intensity and shape of Bragg peaks were investigated 
as a function of the grazing incidence. 

2.1. Choice of  the Bragg reflection 

Relation (2) will have a solution for ~o at incidences 
including grazing angles (i -~ 0) only if the Bragg angle 
0s is smaller than a. We report in Table 1 the list of 
values of a and 0B for low-index Bragg reflections 
[silicon (100) substrate, hCu Ka]. 

The condition 0s < a reads 

(h2+k2) ' /2/(h2+k2+12)>A/2a,  (3) 

where a = 5.43/~ is the side of the cubic cell of silicon 
and h = 1.54 A is the wavelength. 

2.2. Outgoing beam 

Another important aspect of the geometry is that 
it allows not only grazing incidences for the incident 
beam but also for the outgoing beam. Denoting the 
angle of the diffracted beam with respect to the surface 
by o, we have 

sin o = - s in  i + 2 sin 0B cos a, 

SAMPLE SURFACE 

~ D~CEE~A~M~oTN 

Fig. 3. Schematic view of the four-circle diffractometer used for 
the experiment. The angular movements/, to, ~o and qs correspond 
to the angles shown in Fig. 2. 

Table 1. List of  low-index Bragg reflections with the 
corresponding angles 0~, a and is ; only those satisfying 

6)s < a can be used for transmission measurements 

h k 1 OA a i s Possible use 
1 1 1 14.21 54-74 16.48 Yes 

2 2 0 45 34.56 Yes 
2 0 2 23.65 45 34.56 Yes 
0 2 2 90 0 No (vert. planes) 

3 1 1 25.24 - -  No 
1 3 1 28.05 72.45 16.48 Yes 
1 1 3 72.45 16-48 Yes 

4 0 0  0 - -  No 
0 4 0 34.56 90 0 No (vert. planes) 
0 0 4 90 0 No (vert. planes) 

3 3 1 46.51 58.31 Yes 
3 1 3 38.19 46.51 58.31 Yes 
1 3 3 76.74 16.48 Yes 

which shows that, when sini  comes close to 
2 sin 0s cos a, o becomes very small (since 0s < 
a, 2 sin 0B cos a < 1). The angle is corresponding to 
a zero output angle has also been reported in Table 
1. The possibility of achieving low output angles is 
simply a consequence of the symmetry between 
incident and diffracted beams. 

It should be noted that the angle is is large for 
most reflections (e.g. is = 34"6 ° for the 220 reflection 
we shall consider later on) so that the grazing condi- 
tion will not occur simultaneously for incident and 
diffracted beams. The only exception to this is the 
case of planes perpendicular or nearly perpendicular 
to the surface. 

This case corresponds to grazing-incidence diffrac- 
tion geometry (GID). GID has been studied exten- 
sively in recent years (Marra, Eisenberger & Cho, 
1979; Dosch, Batterman & Wack, 1986; Sakata & 
Hashizume, 1988) and we shall not consider this 
particular case here. Note however that the dynamical 
treatment given below applies to this case as well. 

Finally, there is another way of doing a similar 
experiment (Sauvage, 1989), which would be 
especially well suited to synchrotron radiation since 
it would take advantage of the possibility of changing 
A. If A and i are chosen according to 

/ [  2 ' r7  ~'~J"2//2-]1/2 qsd + ,Is,, I A = 2 d  sin a 1 - - - c o s  a 

and qs=4cr(sin i)/A, where qs is the wave-vector 
transfer for the surface reflection, the Bragg condition 
will be satisfied without requiring orientation of the 
Bragg reflection out of the plane of incidence ors. 
Monochromation at the required wavelength could 
be achieved by the substrate Bragg reflection itself 
just sending a white beam over the sample under 
incidence i. Note, however, that changes in 
wavelength make the modelling (index) somewhat 
more complicated. 
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3. Calculation of the diffracted intensity 

The path of the X-ray beam in the previous geometry 
involves two transmissions through the film (at the 
entrance and at the exit) and a reflection in the 
substrate. Propagation of electromagnetic waves 
through these two media can be described using two 
formalisms derived from Maxwell equations: 
dynamical theory for the crystalline substrate and 
transfer-matrix formalism for the film. In this section, 
we shall examine how they can be coupled together 
to yield the diffracted intensity as a function of 
incidence and how the transmission is related to this 
intensity. 

3.1. Dynamical theory 

The propagation of X-rays in a perfect crystal is 
given by the solution of Maxwell equations in a 
three-dimensional periodic medium. Expanding the 
index of refraction and the different waves in Fourier 
series and assuming a simple Bragg reflection takes 
place, one finds that the incident and diffracted 
wavefields must satisfy the following equations 
(James, 1982; Batterman & Cole, 1964): 

{ [ ( K 2 - k 2 ) / K 2 ] D n = ~ ° ° D n + ~ ° n D ° t n l  (4) 

[ (K 2 -  k2)/ K2]Do = ~oa Dnto I + ~ooDo, 

where D~tj I is the projection of the electric induction 
Di on the plane normal to Kj. The indices 0 and H 
stand for incident and diffracted waves, respectively. 

~oi are the Fourier components of the polarizability. 
The condition that these equations should have a 

solution is 

[ (K ~ - k 2) / K ~ - ~0o][ (K ~ - k 2) / K ~ - ~Oo] = p2 ~on~oa, 

(5) 

where P is the polarization factor [1 for s, cos (20n) 
for p]. 

Phase matching at any interface parallel to the 
surface requires that the tangential components of 
the internal wave vectors (Ki) equal those of the 
external wave vectors (ki). 

kill = K~II. (6) 

Thus we can set Ko = k o -  gkn, and substituting into 
(5) yields a fourth-order equation in g which reads, 
using standard notation (e.g. Bedynska, 1973, 1974; 
Hartwig, 1976, 1977; Rustichelli, 1975), 

g4+ (A  + B)g  3 + ( A B  + C + 2X1)g 2 

+ [ X I ( A + B ) + A C ] g + ( X ~ C + X 2 ) = O ,  (7) 

where, in our geometry, 

A = - 2  sin i 

B = 4 sin On cos a - 2 sin i 

C = 4 sin 2 On - 4 sin On 

x (cos i sin a cos ~0 + sin i cos a )  (8) 

~Oo(1 - ~Oo) + p2 ~on~or~ 
X l  = 

(1 - ~Oo) 2 _ p2 ~o,~o~ , 

~p 2 o - -  p 2 ~p H~p ~ 
x2= 

(1 - ~Oo) 2 _ p2 q~H~o " 

A graphical solution of (5) and (7) can be obtained 
by constructing the dispersion surface defined as the 
loci of the extremities of all vectors Ko satisfying (5). 
The pairs (Ko, Kn)  of waves allowed to propagate in 
the crystal are those satisfying condition (6). The 
origin of these vectors is at the intersection between 
the normal to the surface and the dispersion surface 
(see Fig. 4), the so-called tie points An. 

Therefore, for each incidence angle there will be 
in general four pairs of wave vectors (Kon, KHn), 
possibly complex, allowed to propagate in the sub- 
strate. For each pair of waves the ratio of incident to 
diffracted amplitude will be given from (5) by 

DHn_ 1 ( g E + A g n - ~ O o ) = X n .  (9) 
Don ~p~ l + g2 + Agn 

Fig. 4. Dispersion surface. The intersections of this surface with 
the normal to the sample surface are the four tie points Ai. H 
is the reciprocal-lattice vector of the set of Bragg planes. 

3.2. Boundary conditions 

Up to this point, the nature of the surface itself has 
not been taken into account; the boundary conditions 
will fix the repartition of the intensity between the 
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different wavefields and yield the intensity of the 
beam diffracted out of the crystal. 

3.2.1. General considerations. Since the substrate 
used in the experiment is thick, we may consider it 
as a semi-infinite crystal. Thus, all the waves corre- 
sponding to gi with Im (gi) < 0 have to be physically 
excluded because they would have an amplitude ever 
increasing with depth. We are then left with two pairs 
of waves. In the standard case of a crystal surface, 
boundary conditions are simply equality conditions 
for parallel and perpendicular components of the 
electric and magnetic fields, respectively. Here, the 
relations have to account for the propagation in the 
film coverage. 

3.2.2. Transfer matrices. The problem of the 
propagation of light in stratified media is a classical 
problem of optics (Abelbs, 1950; Born & Wolf, 1984). 
It has been shown that such a medium may be fully 
described by a 2 x 2 unimodular  characteristic matrix 
M. This formalism also holds in the X-ray range and 
has been widely used in the characterization of multi- 
layer film by X-ray reflectivity. 

The characteristic matrix M is actually a transfer 
matrix which relates the component of the electric 
and magnetic fields on one side of the film to the 
components on the other side. Thus, it is well suited 
to express our boundary conditions which read 

( D o 1  "it" D 0 2  ~ ( D°+Dr 
FolDol + Fo2Do2/ =(Mdl) kFo(Do_ Dr)] (10) 

for the incident waves and 

Fn l DH1 "k 1-'H2DH2 / _FnD n 

for the diffracted waves. 
In these expressions F .  = Ks • ns/K~ and Do, Dr, 

DH are the electric inductions of the incident, reflec- 
ted and diffracted waves. 

3.2.3. Expression for the matrices. In (10) and (11) 
the matrices Ma and M~ are transfer matrices for 
wave propagation in the a i r~subs t ra te  and sub- 
strate ~ air directions. It should be noted that they 
are not related in any simple way since a matrix 
depends not only on the index profile of the system 
but also on an invariant which is (KII) (i.e., in optics, 
the invariant n cos i of Snell's law). 

Here gOll and KHII are different since H has a 
component in the plane of the surface. 

Also, the two index profiles of Md and M~ are 
symmetric to each other. If  we assume that the profile 
may be broken into a series of n homogeneous 
laminae then 

= " M 1 M M d 'rrj= 1 j and M~=crj=. j 

and except in the case n = 1 no simple relationship 
exists between these two matrices, even at a same 
value of (KII). 

It should also be noted that the expression for the 
matrices depends on the polarization but this effect 
is small at glancing angle and we neglect it. At large 
angle M - I  in both cases. 

3.2.4. Derivation of the transmissivity. The set of 
equations (9), (10), (11) allows a determination of 
both Dr~Do and DH/Do and consequently of the 
reflected and diffracted intensities for any value of 
the incidence angle i: 

IR=IDR/Dol 2, In=[Re(Fn)/Re(Fo)]IDn/Dol 2. 

We shall now discuss how these two quantities are 
related to standard expressions for reflectivity and 
transmissivity in the case of grazing incidence. 

Reflection and transmission coefficients in the stan- 
dard configuration (i.e. when no diffraction occurs in 
the substrate) are solutions of 

\Fo(Do-Dr) /= r,D, (12) 

where 

F,=K, .n/K2,. 
Comparison of (12) and (10) shows that, due to 

the presence of two waves propagating in slightly 
different directions, transmission and reflection will 
differ when the substrate is in Bragg reflection 
position. 

This difference remains small, however, except in 
the case of O ~- Oc and it cancels exactly at an 
incidence corresponding to the centre of the Darwin 
curve (see Fig. 5). In practice, due to the divergence 
of the incident beam, one averages over a finite width 
which is comparable to, or larger than, the Darwin 
width and discrepancies on each side cancel. 

x 1 0 - 3  
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t 

! t 

s S  x 
01 . . . . . .  i - - - "  | i ~ . . . .  4 . . . . .  
-0.50 0.54 0.58 

INCIDENT ANGLE i (Deg) 

0.8 >- 

(£) 
Z 
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z 

8 
O.4 ~- 

Q2 u. Q 

Fig. 5. Reflected and diffracted intensities as a function of 
incidence for a single-crystal silicon surface. The standard reflec- 
tivity has also been drawn to show the influence of Bragg 
reflection on surface reflection. Note the shift of the Darwin 
curve (io = 0"50°). 
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The assumption that the reflection coefficient is 
unchanged means that (10) is equivalent to (12), i.e. 

I 'o, Do, + ro~_Do~/ 1-',Dr " 

If one puts Mi = I into (10) according to the large 
exit angle, this shows that DH = aD, where the pro- 
portionality coefficient is independent of the matrix 
Md, i.e. of the coverage. The diffracted intensity 
IDH/Do] is thus proportional to the transmission 
coefficient t and the proportionality coefficient may 
be viewed as a reflection coefficient for the substrate. 
Note that such results are not valid when the incident 
angle is less than or close to ic or when both incident 
and take-off angles are small. In this case, significant 
changes to the reflection are induced by the Bragg 
reflection (see e.g. Cowan, 1985) and the calculation 
of the diffracted intensity has to be made using the 
complete set of equations (9), (10) and (11). 

3.2.5. Shape of  the Darwin curve. Let us consider 
first the case of a single-crystal surface. At large 
angles, the width and the shift of the Darwin curve 
with respect to the geometrical Bragg position 
increase with decreasing incidences. For small 
incidences, this shift tends to the critical angle ic and 
the width decreases again, due to the truncation of 
the Darwin curve at i = ic. Correspondingly, the value 
of ~o for a maximum intensity at i = io is shifted from 
its geometrical position given by (2). 

The total diffracted intensity is obtained by integra- 
tion of the Darwin curve. Experimentally, the diver- 
gence of the incident beam (0.1 mrad) is often greater 
than the Darwin width. Special attention has to be 
paid to the low incidence case where these widths 
are similar. 

4. Experimental results 

4.1. Sample description - reflectivity 

By way of example, we have investigated the trans- 
mission of an Ni /C multilayer deposited by sputtering 
on the (100) surface of a silicon single-crystal wafer. 
The orientation of the surface was checked by record- 
ing the 400 Bragg reflection and no appreciable miscut 
of the surface with respect to these planes was detec- 
ted. The deposit includes ten pairs of Ni and C layers. 
It has been characterized by transmission electron 
microscopy on cross sections obtained by cleavage 
perpendicular to the surface, and also by X-ray reflec- 
tivity (Rieutord, Benattar, Rivoira, Lepetre, Blot & 
Luzet, 1989). An index profile corresponding to a fit 
to these data is shown in Fig. 6. The experimental 
reflectivity is shown in Fig. 7. The critical angle icy is 
0.33 ° corresponding to the mean index of nickel and 
carbon. Note that due to the large electron density 
of nickel, this critical angle is larger than that of 
silicon (ics~ = 0"2°). Classical features of thin stratified 
deposits are also visible on this curve such as Bragg 
peaks with secondary maxima. 

The model reproduces the main features of the 
experimental data. Some discrepancies still remain 
on the intensities of secondary maxima probably due 
to fluctuations on the individual layer thicknesses that 
have not been included in the model. 

4.2. Diffraction 

The intensity of the 220 reflection has been recorded 
for incidences ranging from 0 incident angle to 0 
take-off angle. 

For angles corresponding to both large input and 
output angles, the diffraction curve is the same as 
that for bare silicon, i.e. it has the standard shape of 
asymmetric Bragg reflection. Absorption in the film 
has a weak effect (less than 1% for i = 17 °, correspond- 
ing to the symmetric case). 

40.10 .o ! i i ! 

,..o 
[.z...] 

30 

~" 6Ni 

m ~e 

0 I J  I I I I I . I 
0 100 200 300 400 500 600 

DEPTH Z (A) 

6s, 

Fig. 6. Index profile corresponding to a fit of the rettectivity of 
Fig. 7. The steps symbolize the positions of the interfaces. 

4.2.1. Grazing incidence. For angles smaller than 
the critical angle icy, the intensity is very small 

0 .8  

>- 
I -  

I -  

,,-; 0.4 , , 100  

0 .4  0 .8  1 2  i~5 2 .0  
ANGLE (Deg) 

Fig. 7. Reflectivity curve of the multilayer (linear scale). Note the 
critical angle and the Bragg peak with a secondary maximum 
on the right. 
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(Fig. 8). When the incident angle i lies between iCs~ 
and i¢:, the incident wave gives rise to an evanescent 
wave in the film, but which propagates again in the 
substrate. Thus a small part of the intensity may be 
allowed to cross the film. However, this zone is hardly 
seen on the curve because of absorption. Modulations 
are also visible on the curve, which are due to Kiessig 
fringes, i.e. interferences between the waves reflected 
at both sides of the film. 

At angles greater than i~, the incident beam can 
penetrate into the film and the substrate, and the 
intensity increases rapidly. 

At small incidences, the intensity measurements 
have been performed using rocking curves, i.e. ~o scans 
at constant incidence. On each curve we determined 
the position and the intensity of the maximum. The 
shift of this position with respect to the geometrical 
position given by (2) is due to the shift of the Darwin 
curve with respect to the Bragg position. Its evolution 
as a function of incidence is shown (Fig. 9). It is in 
agreement with theoretical calculation but the 
accuracy of the experimental data is rather poor due 
to the comparatively large angular dispersion of the 
incident beam. 

In these experiments, we have used a standard 
copper sealed-tube source. The intensity of the Bragg 
reflection is close to 10 4 counts s -~ at the maximum 
with our collimation. High counts are required to 
improve the statistical accuracy and detect small vari- 
ations in the transmission. Thus, use of synchrotron 
radiation would allow better accuracy together with 
an improved collimation of the incident beam. 

Another feature characteristic of transmission from 
multilayers is the hollow peak at i = 0.92 °. This peak 

.< 
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INCIDENT ANGLE (DEG.) 

[.. 

Z 

Fig. 8. Small-angle part of the diffracted intensity as a function of  
incidence. The upper  solid line is the calculation for bare silicon 
and the lower one is for the film using the profile of Fig. 6. 
Circles are experimental data. 

corresponds of course to the decrease of intensity in 
the beam due to the reflection in the Bragg peak of 
the structure. The relative height and shape of this 
peak are similar to those of the reflectivity curve of 
Fig. 7. 

4.2.2. Graz ing -ou tpu t  angle. On the large angle part 
of the diffraction curve, similar features are visible 
(Fig. 10). Now the exit angle is small and decreases 
with i. A direct comparison with reflectivity is imposs- 
ible in this case since the corresponding reflectivity 
(i.e. under negative incidence) cannot be measured. 
The total reflection angle is now related to the 
difference of indices between the substrate and the 
film. The measured value [Oc = (iec - is) cos is = 0"25 °] 
is in good agreement with the theoretical value 
deduced from the index profile [ ( 2 8 F - 2 8 s )  ~/2= 
0.23°]. The position of the hollow Bragg peak also 
follows the theoretical prediction of the model. Near 
ice, the beam propagating from the substrate to the 
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Fig. 9. Shift of  the angle ~p with respect to its theoretical position 
~o o v e r s u s  incident angle i o. The solid line represents the 
theory. 
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Fig. 10. High-angle part of  the diffracted intensity. The angle iec 
corresponds to total reflection at the substrate/film interface, i s 

is the incidence for zero output angle. 
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film only partially penetrates the film and probes 
selectively the region near the interface. 

5. Applications 

Measuring a transmission coefficient is interesting as 
a complement to reflectivity. In principle, the infor- 
mation provided by transmissivity T and reflectivity 
R is the same since for a non-absorbing stratified 
medium they are related by R + T = 1. In practice, 
however: real systems do absorb and their index is 
not a function of the z coordinate only; and our 
geometry may allow transmission measurements in 
cases where reflectivity is not available. 

We shall now describe potential applications which 
stem from these two statements. 

5.1. Rough surfaces 

A very common reason for a system to be not strictly 
stratified is surface and/or  interfacial roughness from 
lateral height fluctuations, i.e. lateral dependence of 
the electronic density (i.e. of the index)., 

The problem of accounting for roughness in reflec- 
tivity calculations has no general solution valid for 
all kind of roughness. The simplest model consists of 
an in-plane averaging of the density, modelling the 
interface by a transition layer in which the index 
varies smoothly along the normal (Fig. 11). 

This approach is justified within the kinematical 
approximation only, and it may fail in some cases, 
especially when the penetration length of the radi- 
ation is smaller or of the order of the characteristic 
size of the roughness. This may occur when the 
penetration length is small (e.g. below the critical 
angle) or when long wavelengths or large amplitudes 
are present in the roughness. 

Roughness has different effects on reflection and 
transmission (Nevot & Croce, 1980; Nevot, Pardo & 
Corno, 1988). For instance, the transition-layer model 
predicts that the reflectivity is damped by a standard 
Debye-Waller factor [exp (--q20"2)] whereas trans- 
missivity is increased correspondingly, so that all the 
intensity lost in the reflection arises in the trans- 
mission (Pardo, Megademini & Andre, 1988). 
Obviously, this model cannot account for the scatter- 
ing by asperities in non-specular directions. 

~ 2 ~  ~I~! X'Y ~ A~, X'Y.~, . 

@ ® 

Fig. 11. Two kinds of rough profiles giving the same rettectivity 
but different transmissivities. 

Balancing reflectivity and transmissivity allows a 
determination of the overall intensity lost in the 
scattering process and gives information about the 
spectrum of the roughnesses. 

For our systems, no significant discrepancies have 
been detected between the model and the experiments 
as the incidence varies. Scattering losses are weak 
and the transition-layer model applies very well in 
this case. Systems with greater roughnesses may be 
better candidates for this kind of study. 

5.2. Buried interfaces 

Another interest of the method is the possibility of 
achieving grazing incidence for the diffracted beam. 
This could be used to investigate preferentially the 
region near the film/substrate interface. Here we have 
been interested in the transmission information but 
the same geometry could be adopted for other tech- 
niques taking advantage of the shallow penetration 
of the outgoing beam in the film (such as grazing- 
incidence fluorescence etc.). It should be noted that 
very few techniques are available for investiga- 
tions of these kinds of interfaces. Often reflectivity 
cannot be used since it requires that incident and 
reflected beams travel over large distances in the 
substrate. 

Concluding remarks 

We have demonstrated that transmission measure- 
ments in the grazing-incidence mode can be per- 
formed to provide information about thin films or 
surfaces that may complement data from other 
techniques. From a more general point of view, the 
technique we describe is another way of taking advan- 
tage of the combined substrate/adsorbate scattering 
to probe the adsorbate. The use of substrate as an 
'internal' beam conditioner has been developed in a 
few other techniques. For instance, we showed in a 
previous paper (Rieutord, Benattar, Rivoira, Lepetre, 
Blot & Luzet, 1989) how it could yield the phase of 
the absorbate structure factor. The standing-wave 
technique is also based on the use of a substrate- 
produced standing wavefield to probe the deposit 
(using fluorescence). 

In these techniques combining scattering by perfect 
crystal and/or  grazing incidence, use of dynamical 
theory is almost compulsory. We have shown that 
this theory lends itself easily to a combination with 
other standard thin-film formalisms. 

We thank J. J. Benattar for his support and C. Blot 
for assistance. The experiments were performed at 
the Service de Physique du Solide et de R6sonance 
Magn6tique (SPSRM, CEN Saclay, 91191 Gif-sur- 
Yvette, France) of the Commissariat ~ l'Energie 
Atomique. 
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Abstract 

In two papers [Chang & Tang (1988). Acta Cryst. A44, 
1065-1072 and Tang & Chang (1988). Acta Cryst. A44, 
1073-1078] the authors are confused with respect to the 
rotation sense of the crystal lattice during a Renninger 
0-scan experiment. This leads to wrong phase determina- 
tion. We show that the definition of the triple phase sum 
involved in a three-beam case used by Chang & Tang is 
not valid if strong anomalous-dispersion effects must be 
taken into account. 

The asymmetry of the integrated ~-scan profiles scanning 
through a three-beam position contain information on the 
phase difference between the directly diffracted wave 
(primary reflection) generated by diffraction of the incident 
beam at the lattice planes of the reciprocal-lattice vector 
(r.l.v.) G and the 'Renninger Umweg' wave generated by 
simultaneous diffraction at the lattice plane of the r.l.v.'s L 
(secondary reflection) and G - L . *  

[Parenthetic note: The schematic representation of the 
three-beam interaction in Fig. 1.1 of the review article of  
Chang (1987) is wrong. The diffraction condition of the 
incident beam with respect to the lattice planes G - L is not 
fulfilled. In a three-beam case 0 /G/L,  three strong wave 
fields are excited with wave vectors K(0), K(G) and K(L). 
A wave field with K ( G - L )  does not exist.] 

It is well known and proved theoretically and experi- 
mentally that the asymmetry of a 0-scan profile depends 
also on the rotation sense of the reciprocal lattice relative 
to the Ewald sphere, independent of the special three-beam 
position selected from the two possible three-beam posi- 
tions for each individual three-beam case. 

To be clear in the nomenclature for the rotation sense, 
we define the following: A ~ scan through a three-beam 
position is called an ' in-out '  ~ scan when the second r.l.v. 
L lies inside the Ewald sphere at the beginning of the 
scan and outside at the end of the ~ scan. In Chang's 
(1987)* nomenclature, this is called an outgoing position. 
The opposite rotation sense, an out-in scan, is called by 
Chang the incoming position. 

* Here we use the nomenclature of Chang & Tang (1988) and * For simplicity in citation we refer to the review article of Chang 
Tang & Chang (1988). (1987), where the previous papers of Chang et at are summarized. 
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